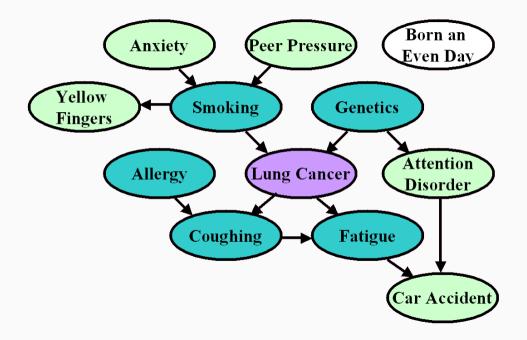
FRI - Feature Relevance Intervals for Interpretable and Interactive Data Exploration

<u>Lukas Pfannschmidt</u>, Christina Göpfert, Ursula Neumann, Dominik Heider, Barbara Hammer

CIBCB19, 10.07.2019

- **2** Feature Relevance Intervals
- **3** This Contribution



Data sources

- serum quantities (chemical composition)
- imaging metrics (shape, size, color)
- DNA sequencing data
- sociodemographic

• ...

Machine Learning (in Bioinformatics)

- preprocessing and feature selection
- 2 choose supervised learning model
- estimation is a state of the state of the
- 4 measure performance on validation data

Goals:

- prediction
- understand unknown process by interpreting <u>featureset</u>

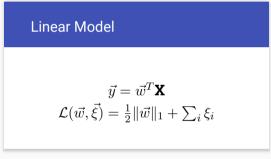
Motivation

- gain insight
- reduce model complexity
- reduce cost
- reduce invasiveness of sample collection for patients

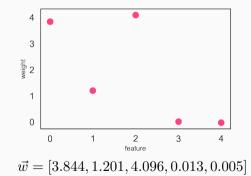
Existing Methods

- Wrapper
 - Exhaustive (NP-hard)
 - Greedy (e.g. RFE)
- Embedded (Lasso)
- Filter

Example for Embedded Approach



Loss function with sparsity constraint



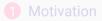
Most existing feature selection approaches (by design) do <u>not</u> give a complete and truthful representation of a features true relevance.

- minimum redundancy is often enforced (and wanted)
- most subsets only represent one of many feasible feature sets

Definition 1

Relevancy classes (Kohavi et al., 1997):

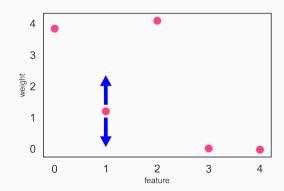
- strongly relevant
- weakly relevant
- irrelevant



2 Feature Relevance Intervals

3 This Contribution

- Find each features maximal and minimal use with similar performance
- Based on linear SVM solution
- Computable using LPs

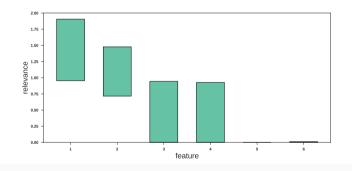


Irrelevant

Lower bound = 0, Upper bound ≈ 0

Strongly relevant Lower bound > 0

Weakly relevant Lower bound = 0, Upper bound > 0



2 Feature Relevance Intervals

3 This Contribution

4 Evaluation

Goal was accessible Python library.

Aspects:

- handle numerical instabilities (LP solvers)
- 2 ability to allow user input
- 8 performance

Irrelevant Lower bound = 0, Upper bound ≈ 0

Strongly relevant

 $\operatorname{Lower}\operatorname{bound}>0$

Weakly relevant Lower bound = 0, Upper bound > 0 Numerical inaccuracies lead to fuzzy values.

Solution: estimate data based threshold

- Generate probes by permuting real features
- Por each feature *i*, compute relevance bounds of its probe *i_p* while excluding *i* itself
- Oetermine threshold according to the distribution of probe relevances

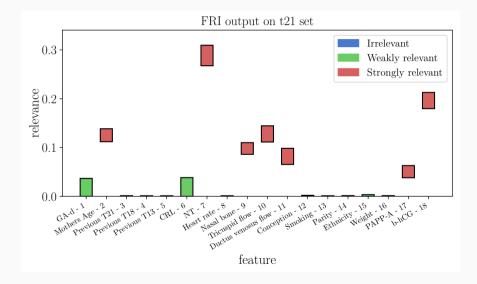
Goals:

- allow user to check own hypotheses by experimenting with the model
- facilitate search for alternative features
- reveal feature dependencies

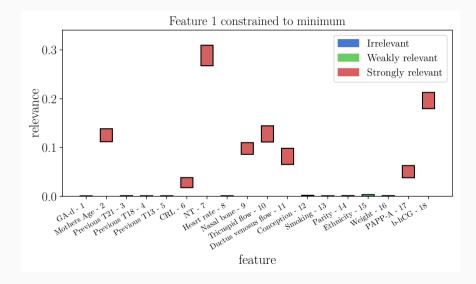
Solution:

- LPs allow simple addition of feature constraints
- simple user defined values based on relevance intervals
- direct connection between visualization and manipulation -> intuitive

Unconstrained



One Feature Disabled



Interactive workflow requires fast results:

- relevance bounds can be computed independently per feature
- structure program for parallel processing (Joblib library)
- use frameworks for distributed computing
- -> ability to use all CPUs on machine or nodes in cluster (Dask framework)

- 2 Feature Relevance Intervals
- **3** This Contribution

Compare selected features sets per method:

- Are all relevant features included?
- Is the featureset compact?
- Is it computationally feasible?

Experimental setup:

- Test on data with known ground truth (toy sets)
- Test on real biomedical data
- Repeat tests over 50 bootstrap iterations

	Strongly relevant	Weakly relevant	Irrelevant
Sim1	4	4	22
Sim2	12	8	10
Sim3	4	0	26
Sim4	18	0	12
Sim5	0	20	10

Related work: all-relevant feature selection

 Elastic Net: weighted sum of L1 and L2 regularization scheme, preserves redundancies (Zou and Hastie, 2004)

 Boruta: wrapper around Random Forest, using random contrast variables and statistical tests (Kursa and Rudnicki, 2010)

 Ensemble Feature Selection: combination of multiple other feature relevancy scores
(Neumann et al. 2016)

(Neumann et al., 2016)

 Stability Selection: aggregation of multiple noisy bootstrap samples of original data to compute stability score (Meinshausen and Bühlmann, 2010)

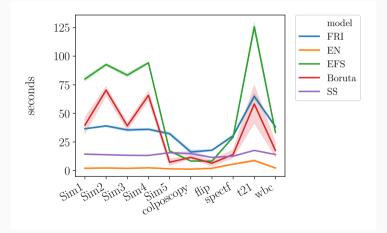
	Boruta	EFS	ElasticNet	FRI	SS
Sim1	0.99	-	1.00	0.92	1.00
Sim2	0.97	-	1.00	0.96	1.00
Sim3	0.99	-	1.00	0.96	1.00
Sim4	0.97	-	1.00	0.93	1.00
Sim5	1.00	-	1.00	0.91	1.00
colp.	1.00	-	0.99	0.97	0.99
flip	1.00	-	0.90	0.82	0.90
spectf	1.00	-	0.99	0.92	0.98
t21	1.00	-	0.98	0.93	0.98
wbc	1.00	-	1.00	0.98	1.00

	Boruta	EFS	EN	FRI	SS
colposcopy	0.56	0.58	0.64	0.66	0.62
flip	0.80	0.65	0.81	0.74	0.70
spectf	0.87	0.87	0.86	0.88	0.88
t21	0.97	0.97	0.97	0.97	0.97
wbc	0.99	0.99	0.99	0.99	0.99

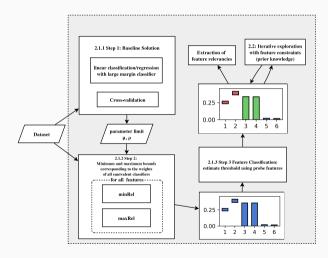
score	F1				
data	Sim1	Sim2	Sim3	Sim4	Sim5
Boruta	0.98	0.82	0.91	0.82	0.98
EFS	0.96	0.76	0.71	0.84	0.94
ElasticNet	0.62	0.84	0.44	0.82	0.80
FRI	0.98	0.98	0.99	0.99	0.99
StabilitySelection	0.77	0.75	1.00	0.91	0.27

	Boruta	EFS	EN	SS	FRI	FRI _s	FRI_w
Sim1	8.1	8.7	17.8	5.0	8.1	5.1	3.0
Sim2	14.3	12.3	26.6	12.1	19.4	12.4	7.0
Sim3	4.6	7.2	14.8	4.0	4.1	4.0	0.1
Sim4	12.6	13.2	26.2	15.0	17.9	17.9	0.0
Sim5	19.1	17.9	29.7	3.2	19.9	0.0	19.9
colp.	35.1	25.4	46.5	41.5	20.3	5.9	14.4
flip	18.8	8.1	16.9	9.1	8.9	8.8	0.1
spectf	44.0	20.3	43.1	5.9	19.9	5.9	14.0
t21	15.5	7.9	14.2	9.6	9.6	6.6	3.0
wbc	29.9	12.5	26.9	4.7	15.6	4.0	11.6

Single Thread Runtime Comparison



FRI Python Library



available as Python library
\$ pip install fri

or

github.com/lpfann/fri

- batch processing API
- interactive workflow functions

Feature selection

- we conserve all relevant features
- sparse and interpretable
- competitive performance

Interactive exploration

- intuitive way to manipulate the model
- visual feedback

Thank you for your attention!

$$\begin{split} \mathsf{minRel}((x_i, y_i)_{i=1}^n, j) &: \min_{\omega, b, \xi} |\omega_j| \\ & \mathsf{s.t.} \\ & y_i(\omega^\top x_i - b) \ge 1 - \xi_i \\ & \xi_i \ge 0 \\ & \sum_{i=1}^n \xi_i \le \rho \\ & \|\omega\|_1 \le \mu. \end{split}$$

 ρ and μ are the upper limits from an initial baseline L_1 model.

Adding constraints

$$\begin{split} \mathsf{minRel}\mathbf{C}(\mathbb{D}, j, \mathbf{fc}) &: \min_{\omega, b, \xi} |\omega_j| \\ & \mathsf{s.t.} \\ & y_i(\omega^\top x_i - b) \ge 1 - \xi_i \\ & \xi_i \ge 0, \\ & \sum_{i=1}^n \xi_i \le \rho \\ & \|\omega\|_1 \le \mu. \\ & \mathbf{fc}_{min}^k \ge |\omega_k| \ge \mathbf{fc}_{max}^k, \forall k \neq j \end{split}$$

.

score	precis					recall			
data	Sim1	Sim2	Sim3	Sim4	Sim5	Sim1	Sim2	Sim3	Sim
Boruta	0.99	1.00	0.87	1.00	1.00	1.00	0.72	0.98	0.7
EFS	0.93	1.00	0.57	1.00	1.00	1.00	0.62	0.98	0.7
ElasticNet	0.46	0.74	0.28	0.69	0.67	1.00	0.98	1.00	1.0
FRI	0.98	1.00	0.98	0.99	1.00	0.99	0.97	1.00	0.9
StabilitySelection	1.00	1.00	1.00	1.00	1.00	0.62	0.60	1.00	0.8